9-4 The Addition-or-Subtraction Method

Objective: To use addition or subtraction to solve systems of linear equations in two variables.

Vocabulary

Addition-or-subtraction method A method to solve systems of equations.

You can use the addition-or-subtraction method whenever two equations have the same or opposite coefficients for one of their terms.

Example 1	(The Addition Method)		
	Solve: $4x - y = 7$ $2x + y = 5$		
Solution	Add similar terms of the two equations.	4x - y = 7 $2x + y = 5$ $6x = 12$	The y-terms are eliminated.
	2. Solve the resulting equation.	x = 2	
	3. Substitute 2 for x in either of the original equations to find y.	2x + y = 5 $2(2) + y = 5$ $y = 1$	
	4. Check $x = 2$ and $y = 1$ in both original equations.		$2x + y = 5$ $2(2) + 1 \stackrel{?}{=} 5$

7 = 7

5 = 5

Example 2 (The Subtraction Method)

Solve:
$$5c + 3d = 14$$
 $5c - d = 22$

Solution

1. Subtract similar terms of the two equations.

$$5c + 3d = 14$$

$$5c - d = 22$$

$$4d = -8$$

$$2. Solve the resulting equation.
$$d = -2$$
3. Substitute -2 for d in either of the original equations to find c .
$$5c + 3(-2) = 14$$

$$5c - 6 = 14$$

$$5c = 20$$

$$c = 4$$
4. The check in both equations is left for you.

The solution is $(4, -2)$.$$

DATE

9-4 The Addition-or-Subtraction Method (continued)

Solve by the addition-or-subtraction method.

1.
$$x + y = 6$$
 2. $m + n = 12$

1.
$$x + y = 6$$

 $x - y = 2$ (4, 2)

2. $m + k$
 $m - k$

$$m-n=6$$
 (9, 3)

3.
$$2x + y = 3$$

 $x - y = 3$ (2, -1)

4.
$$2x + y = 5$$

 $x + y = 4$ **(1, 3)**

5.
$$3m - 2n = 11$$

 $5m + 2n = 13$ (3, -1)

6.
$$12m + 3n = 0$$

 $5m + 3n = 7$ (-1, 4)
9. $2c + 3d = 3$

24. 3x - 8y = 10

 $n = \frac{m}{-3}$ (-12, 4)

3. $(2 \cdot 10^3) + (3 \cdot 10^2) + (5 \cdot 10)$

7.
$$6x - 7y = 14$$

 $-6x + 3y = -6$ (0, -2)
8. $4a - 5b = 10$
 $2a - 5b = 0$ (1)

$$-6x + 3y = -6 (0, -2) 2a - 5b = 0 (5, 2) 2c + d = -3 (-3, 3)$$

$$\mathbf{0.} \ 4x - 3y = -10 \\
2x + 3y = 4 \ (-1.2)$$

10.
$$4x - 3y = -10$$

 $2x + 3y = 4$ (-1, 2)

11. $2x - y = 7$
 $3x + y = 8$ (3, -1)

12. $6x - 5y = 1$
 $2x - 5y = 17$ (-4, -5)

13. $9x + 2y = -22$

14. $5m + 12n = -1$

15. $3a + 2c = 30$

$$9x - 10y = 2$$
 (-2, -3)
16. $3m + 4n = 7$
 $-3m + 9n = 6$ (1, 1)

$$9x - 10y = 2$$
 (-2, -2) $8m + 12n = 20$ (7, -3) $5a - 2c = 2$ (4, 9)
16. $3m + 4n = 7$ 17. $4x - 2y = -8$ 18. $6a - 5b = 2$

19.
$$7x - 11y = -1$$

$$4x + 5y = 6$$
 (-1, 2) $4a + 5b = -32$ (-3, -4)
20. $\frac{1}{2}x + \frac{1}{3}y = 2$ 21. $\frac{3}{4}x - \frac{1}{6}y = -7$

19.
$$7x - 11y = -1$$

 $13x + 11y = 61$ (3, 2)

$$\frac{11y = 61}{2} = \frac{21}{3} = \frac{21}{3} = \frac{21}{4} = \frac{4}{6} = \frac{6}{7} = \frac{1}{1} = \frac{3}{4} = \frac{1}{6} = \frac{1}{1} = \frac{1}$$

Solve by either the substitution or the addition-or-subtraction method.

22.
$$a = 4b$$
 $a + 2b = -$

$$a + 2b = -6 \ (-4, -1) \qquad 2x + y = 6 \ (3, 0) \qquad 2x + 8y = -20 \ (-2, -2)$$
25. $3(a-2b) = 6$ $2(a + 3b) = -6 \ (0, -1)$
26. $n = 6m - 2$ $\frac{1}{2}n - m = -1 \ (0, -2)$
27. $\frac{1}{3}a - \frac{2}{3}b = -2$ $a + b - 12 = 0 \ (6, 6)$

23. x - 5y = 3

28.
$$y = \frac{2}{3}x$$
 29. $\frac{a}{3} - \frac{b}{3} = 2$ 2x + 3y = -24 (-6, -4) 2a + b = 3 (3, -3)

$$2(a + 3b) = -6 \cdot (0, -1)$$

$$\frac{1}{2}n - m = -1 \cdot (0, -2)$$

$$a + b - 12 = 0 \cdot (6, 6)$$

$$28. \ y = \frac{2}{3}x$$

$$29. \ \frac{a}{3} - \frac{b}{3} = 2$$

$$30. \ 2n - 11 = \frac{m}{4}$$

Simplify.
$$6x^3 + 9x^2 - x$$

1.
$$6x^3$$

1.
$$6x^3 + 4x^2 - x + 5x^2$$

4.
$$-3[2n - (n + 1)] - 3n + 3$$
 5. $(8x^3y^2)(\frac{3}{4}x^2y)$ **6x**⁵y³ **6.** $(2a^5)^2$ **4a**¹⁰

.
$$(-2ab^2)^3$$
 -8 a^3b

7.
$$(-2ab^2)^3$$
 -8a³b⁶ 8. $2x[3x + 2(4-x)]$

2. $2 \cdot 3^2$ 18

9.
$$(4ab)(-2ab^2)(5a^2b^3) - 40a^4b^6$$

160

10.
$$\left(-\frac{1}{12}\right)(60)\left(\frac{1}{5}\right)$$
 -1 11. $\frac{-6}{\frac{1}{2}}$ -12 $2x^2 + 16x$ 12. $\frac{1}{5}$

12.
$$\frac{1}{5}(-45m + 30n) - 9m + 6n$$

The solution is (2, 1).